Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alan Hazell

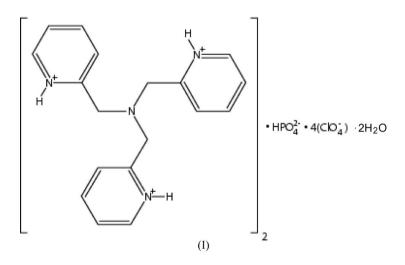
Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark

Correspondence e-mail: ach@chem.au.dk

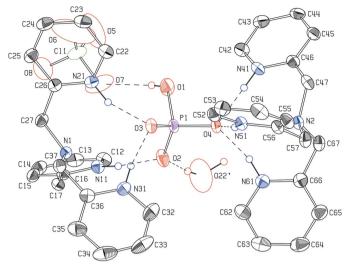
Key indicators

Single-crystal X-ray study T = 120 K Mean σ (C–C) = 0.004 Å R factor = 0.053 wR factor = 0.051 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 10 October 2006


Accepted 24 November 2006

Hydrogen bonding in 2,2',2"-(nitrilotrimethylene)tripyridinium hydrogenphosphate tetrakis(perchlorate) dihydrate and related compounds


In the title salt, $2C_{18}H_{21}N_4^{3+}$ ·HPO₄²⁻.4 ClO₄⁻·2H₂O. the protons of each of the pyridyl N atoms are hydrogen bonded to one HPO₄²⁻ ion. In one 2,2',2''-(nitrilotrimethylene)tripyridinium cation, all three pyridine N atoms are hydrogen bonded to the same oxygen and the ligand has approximate threefold symmetry; in the other, there are two hydrogen bonds to one O atom, and only one to the third O atom, resulting in an asymmetric ligand. The hydrogen-bonding modes observed in this and related compounds are discussed and their geometries compared.

Comment

For tris(2-pyridylmethyl)amine (TPA) (Anderegg & Wenk, 1967), later NMR measurements (Anderegg et al., 1986) showed the pyridyl N atoms to be the acidic ones. TPA is a potentially tetradentate ligand and has been used to study coordination in metal complexes; it is usually tetradentate, but can be tridentate with a pendant methyl pyridine group. H₄TPA⁴⁺ does not seem to exist, but three structures have been determined containing the H₃TPA³⁺ ion, [H₃TPA]-(ClO₄)₃, (II) (Britton et al., 1991), [H₃TPA](NO₃)(SO₄), (III) (Hazell et al., 1999), and [H₃TPA]I₃, (IV) (Karmazin et al., 2003). In (II), each pyridyl N atom is hydrogen bonded to a separate O atom, but in (III), (IV) and in molecule 2 (that containing N2) of the title salt, (I), all are hydrogen bonded to the same atom. In molecule 1 of (I) (that containing N1), two N atoms are hydrogen bonded to one O atom and the third to another (Fig. 1). The three modes are shown in Fig, 2.

© 2006 International Union of Crystallography All rights reserved In (II), (III) and (IV), the ammine N is on a crystallographic threefold axis, this is not the case for (I). HPO_4^{3-} has the expected geometry, *i.e.* P-OH = 1.586 (3) Å and P=O =

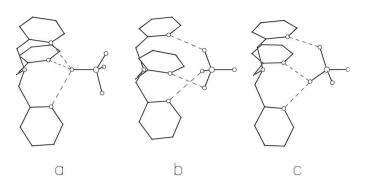
Figure 1

View of [H₃TPA]₂(HPO₄) showing the labelling of the non-H atoms and hydrogen bonds (dashed lines) to HPO4²⁻. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Dashed lines indicate hydrogen bonds. Colour code: phosphorous magenta, chlorine green, oxygen red, nitrogen blue, carbon black; H atoms have the same colour as the atom to which they are bonded.

1.518 (2)–1.528 (2) Å, the long P=O bond being that to O4, which is hydrogen bonded to three N atoms. The O-P-O angles are in the range 103.0 (1)–111.7 (1) $^{\circ}$, the smaller angles involving the long P-OH bond. In category (a), the pyridine rings are twisted further out of the plane through the CH₂ groups than they are in (b), resulting in shorter $N_{py}-N_{py}$ distances in (a). In (c), the $N_{py}-N_{py}$ distances for the two N atoms hydrogen bonded to the same O atom are similar to those in (a), whereas in (c) the distances to that hydrogen bonded to only one oxygen are over 0.5 Å longer. The geometry of H_3TPA^{3+} is thus similar to that in the tetradentate metal complexes in four cases, whilst in the fifth it is more like the tridentate complexes with a pendant nitrogen.

Experimental

The crystals were provided by Hans Toftlund of The University of Southern Denmark


Crystal data

$2C_{18}H_{21}N_4^{3+} \cdot HO_4P^{2-} \cdot 4ClO_4^{-} \cdot 2H_2O$	Z = 4
$M_r = 1116.64$	$D_x = 1.533 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.1366 (7) Å	$\mu = 0.37 \text{ mm}^{-1}$
b = 12.8104 (6) Å	T = 120 K
c = 23.832 (1) Å	Plate, colourless
$\beta = 100.988 \ (1)^{\circ}$	$0.44 \times 0.44 \times 0.14 \text{ mm}$
V = 4836.1 (4) Å ³	

Data collection

Siemens SMART CCD diffractometer ω rotation scans with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.692, T_{\max} = 0.953$

45366 measured reflections 13850 independent reflections 9018 reflections with $I > 3\sigma(I)$ $R_{\rm int}=0.031$ $\theta_{\rm max} = 29.8^\circ$

Figure 2

Modes of hydrogen bonding(dashed lines): (a) (III), (IV) and molecule 2 of (I), (b) (II) and (c) molecule 1 of (I).

Refinement

Refinement on F	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.053$	independent and constrained
$wR(F^2) = 0.051$	refinement
S = 1.04	$w = 1/\{[\sigma_{\rm cs}(F^2) + \mathbf{B} + (1 + \mathbf{A})F^2]^{1/2} -$
9018 reflections	F ² , with A = 0.03, B = 0.5
644 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.81 \ (8) \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.12$ (8) e Å ⁻³

Table 1

Selected torsion angles (°).

N1-C17-C16-N11	66.4 (3)	N2-C47-C46-N41	43.2 (4)
N1-C17-C16-C15	-116.5(3)	N2-C47-C46-C45	-140.3(3)
N1-C27-C26-N21	26.1 (4)	N2-C57-C56-N51	39.3 (4)
N1-C27-C26-C25	-156.5(3)	N2-C57-C56-C55	-143.7(3)
N1-C37-C36-N31	50.2 (3)	N2-C67-C66-N61	37.1 (4)
N1-C37-C36-C35	-132.2 (3)	N2-C67-C66-C65	-145.4 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H01···07	0.69 (4)	2.00 (4)	2.675 (4)	165 (5)
O21−HO21a···O22	0.96	1.82	2.756 (5)	163
O21−HO21b···O9	0.96	2.07	2.895 (5)	143
$O22 - HO22a \cdot \cdot \cdot O2^{i}$	0.96	1.84	2.796 (4)	174
$O22-HO22b\cdots O5^{ii}$	0.96	1.93	2.861 (5)	163
$N11 - HN11 \cdots O2$	0.95	1.68	2.578 (3)	156
N21-HN21···O3	0.95	1.76	2.648 (3)	155
N31-HN31···O3	0.95	1.72	2.658 (3)	169
$N41 - HN41 \cdots O4$	0.95	1.78	2.724 (3)	172
$N51 - HN51 \cdots O4$	0.95	1.78	2.719 (3)	167
$N61 - HN61 \cdots O4$	0.95	1.76	2.688 (3)	166

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

H atoms for the cation were placed in calculated positions (C-H and N-H = 0.95 Å), with $U_{iso}(H) = 1.2U_{eq}$ for the atom to which they are bonded. Coordinates and an isotropic displacement parameters were refined for the H atom of HPO_4^{2-} ; those of the water molecules were kept fixed at the positions obtained from a difference map, with $U_{\rm iso}({\rm H}) = 0.15 \,{\rm \AA}^2$. The maximum electrun-density peak is located 0.91 Å from atom O7.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999) and KRYSTAL (Hazell,

1995); program(s) used to refine structure: modified *ORFLS* (Busing *et al.*, 1962) and *KRYSTAL*; molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *KRYSTAL*; software used to prepare material for publication: *KRYSTAL*.

The author is indebted to the Carlsberg Foundation for the diffractometer and to Hans Toftlund for providing the crystals.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Anderegg, G., Popov, K. & Pregosin, P. S. (1986). *Helv. Chim. Acta*, **69**, 329–332.
- Anderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330-2332.
- Britton, D., Norman, R. E. & Que, L. (1991). Acta Cryst. C47, 2415-2417.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
- Hazell, A. (1995). KRYSTAL. Aarhus University, Denmark.
- Hazell, A., McGinley, J. & Toftlund, H. (1999). J. Chem. Soc. Dalton Trans. pp. 1271–1276.

Karmazin, L., Mazzanti, M. & Pécaut, J. (2003). Inorg. Chem. 42, 5900-5908.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.